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ABSTRACT

This thesis develops all iterative aIigorithil titr thle (hesigri of .\AWNI 1A miiodlels of
signals in the time 'do in. Ilhe algorihtin is ba•ed on optimization ieclhniques.

particularly a gradient technique known as the r s/iric/(d .s/cp 11t01od is used. The

new algorithm is called the dtcratin( Prony m(.Ihod. and the results obtained using this

new method are compared to those obtained using the iterative prefiltering algorit hm.

The thesis shows that the performance of the iteralive Pronv method is in most of

the cases comparable or superior to that of the iterative prefiltering algorit hm.
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I. INTRODUCTION

A. THE IDEA OF ARMA MODELING

Fhe goal of linfar miod(lin/ is to ac('uratelx repr(,s)(nt aii ob'served dat a sequentce

as the output of a linear filter. The idea of representing a complicated process with a

comparatively simpler model has many different applications. (Curve titting in mal h-

ematical modeling,. analysis of electronic devices using equivalent circuits. and system

transfer functions in automatic control are just a few examples outside the area of dig-

ital signal processing. Parametric modeling has also a large number of applications in

signal processing. Currently there is considerable interest in the parametric modeling

approach to spectral estimation. In speech processing the applications include digital

transmission, storage, and synthesis of the speech signal. Our particular interest is

the modeling of sonar signals, such as biologics and other underwater acoustic data.

This work forms part of an overall research program in sonar signal modeling. The

research will help to understand the relative benefits of signal domain algorithms

versus algorithms based on coefficients of the transfer function. It is hoped that the

method developed in this thesis will become an important tool in the overall effort

for sonar signal modeling.

In linear modeling the filter used to generate the data sequence is usually rep-

resented by a linear difference equation with constant coefficients. The Z-transformii

of this type of system is a rational polynomial function. Three type of models are

derived from this kind of systems: they are known as autoregresive (AR). moviTit

average (MA). and autoregresive moving average (ARMIA).

Much work has been done on AR models, which correspond to all-pole systems.

The reason for that is that I he parameters for the model call be obtained bv solving



linear equations. and it great bodY of theory has been dleveloped that atpplies to

this probleri [Ref. 1. 2]. Relatively much less work has been done with N.IA a ii•

A HMIA models. lIowever. since NIA models have limited applications and are almiost

as difficult to obtain as ANRMA models. most interest centers on the latter. I lie

filter in this type of models has both poles and zeros. ad tlie design fulidamnlet ally

involves nonlinear equations. A properly designed ARMA model can provide better

performance than an AR model, with a smaller number of parameters. A\RMA

modeling is the topic of this thesis.

B. WHY AN ITERATIVE ALGORITHM IN THE SIG-
NAL DOMAIN

There are many different approaches to the problem of ARMIA modeling. The

majority of them are based on statistical techniques [Ref. 3]. Some of these methods

regard the data as a realization of a random process while others focus on the data as

given [Ref. 1]. Data oriented methods try to minimize some criterion that estimates

how well the model fits the data, in most cases the least squares error between the

signal and the model. Stochastic approaches may attempt to estimate the model

parameters directly from the data by solving nonlinear equations or by spectral fac-

torization. The maximum likelihood procedure, for example [Ref. 1, 4], is essentially

nonlinear. A number of indirect methods have been developed that modify the norm

of the error by separating the AR and MA parts of the problem so that at least some

of the equations to estimate the parameters become linear. This approach is found

in procedures such as the Prony's method, Shank's method, and the least squares

modified Yule-Walker method [Ref. 1. 2, 5, 6]. A different type of approach replaces

the nonlinear problem with iteration while trying to solve for the AR and MA pa-

rameters simultaneously. The iterative prefiltering method of Steiglitz and McBride

[Ref. 7. 8] is of this type.



Our method is also of the latter t ype. However, the a(lvalitage is t hat it works

directhi with the poles of tile rational model. whic(h we know atifect t lie performanice

of tile system. The poles are displaced in specific (directions so that tile new muodlel

minimizes the error between tihe model output and tile original signal. Iterative

prefiltering on the other hand works with the coefficients of the t ransfer finct ion.

so it is difficult or impossible to predict its effects oti le poles and zeros of the

svstem. The new algorithm is much more dependable with respect to convergence

than the iterative prefiltering algorithm because it moves poles and zeros specifically

to minimize the error between the model and the original signal.

C. THESIS OUTLINE

The remainder of this thesis is organized as follows. Chapter II presents tlhe

modeling methods that are used in this thesis and gives a brief explanation of all

of them. Chapter III introduces the reader to the theory of multidimensional op-

timization by gradient methods and develops the iterative Prony method. which is

the main contribution of this thesis. Chapter IV presents the results of testing the

algorithm on simulated and real acoustic data and compares these results with those

obtained using iterative prefiltering. Chapter V gives conclusions and suggestions for

future research.



II. ARMA MODELING OF SIGNALS

A. MODELING METHODS USED IN THIS THESIS

This thesis deals with deterministic approaches to A\Rl\I[ modeling. Two types

of modeling methods are considered. First we have non-iterative methods like Pmnv'

method and its alternate signal domain form [Ref. 1]: second we consider iterative

methods like iterative prefiltering and the new icratirt Prony method developed in

this thesis.

The goal of Prony's method is to represent a given sequence x[n] as the impulse

response of a linear time invariant (LTI) system. In the transform (z) domain this

representation has the form

X(s) B -) (2.1)A(-)

where X(z) is the z-transform of x[n] and B(s)/A(z) represents the transfer function

of the system. This approximation is explained in more detail in the next section.

What has become known as Pronv's method in the current signal processing literature

differs from Pronyvs original work in some respects. Our basic form of PronV's method

solves for the coefficients of the transfer function in (2.1).

The signal domain form of Pronv's method is closer to Prony's original work

[Ref. 1, p.560] and seeks to represent the data in terms of a set of damped exponen-

tials as

x[n] ,- cirI +- C2r +• -. cprp

where the rk are the roots of the denominator polynomial A(s) and the ck are tlhe

complex coefficients required for the expansion. Both forms involve linear equations

and least squares techniques.



6[n])N-s) I) -,

Figure 2.1: Block diagram for the direct method for signal modeling.

The iterative prefiltering itiet hod used is due to Steiglitz and McBride [Ref. 7. 8]

and attempts to match the data with a model of finite order using an efficient iterative1

approach. It differs from Pronv's method in that it solves for b)oth numerator and

denominator polynomial coefficients simnultancously at each iteration.

Whenever a signal is modeled using a lixed-order rational polynomial model, an

approximation has to be made and some kind of measure has to be used to determine

the 'goodness* of the model. In this thesis the least squares error norm (rnboxl2

norm) is used to measure the approximation error. This norm measures the energy

of the error and is the norm most widely used primarily due to its mathematical

tractability [Ref. 2].

B. OVERVIEW OF MODELING METHODS

1. Prony's Method

The derivations of all the modeling methods presented in this section follow

those in [Ref. 1. pp. 550-564] and [Ref. 2]. As stated above. Pronvys method aims

at representing a signal as the impulse response of an LTI system. Figure 2.1 shows

an implementation of this approximation which is known as the dircct minchod. The

system function N7(zs) in the transform domain is a rational polynomial function

B(s)/A(s) with Q zeros and P poles. The error signal ([II] is comnputed as the

difference between the response of the system ,i[n] and the given signal r[n]. i.e.

[,l] = r[n] - .i-[,]. (2.2)



Flhe LTI system is chosen to minimize the suin of squared errors

S) ý111 2 . (2.3)

This problern leads to nonlinear equat ions whose solution if a f1 niqIWe solution act II-

ally exists) turns out to be a very difficult task [Ref. 1. 2]. To avoid these dit iculties.

a number of indirect methods have been developed for modeling. Pronv's method is

one of these procedures and can be derived as follows. The LTI systemi satisfies the

difference equation

.•'[n] + -a'-[,, - 1] +- + api'[n - P] = 1bo[,[n] + 1,,[n,- 1] + + IQO[n - V2].

(2.1)

If the requirement that

![n] = x[n], n = 0.1, .... -1

is applied to (2.4), where NV is the length of the data. and the difference equation is

evaluated for n = 0. 1,..., Ns - 1, the result is the matrix equation

x[0] 0 0 ... 0 bo
x[1] X[O] 0 ... 0 ,
x[21 X l] X [[] ... 0 11)

a1

x[Q] x[Q - 1] x[Q - 2] ... ,c[Q - P] bQ (25)
x[Q + 1] r[Q] x[Q-i] .. c[Q- P + l] 0

Sx[N,- 1] x,[N1 - 2] r[N 3-3J .. x[Ns- P-1] 0

This can be written as

X[ 3 a b ] (2.6)

6



where ,x[o] 0 0 .. 1)
112] .,[l] .,[o] M ...

. [Q - 11 .[Q- 2] r[Q

and

'[Q + 1] x[Q] .[Q - ] .,.[Q P+ ]

XA = (2.8)

-x[N., - 11 x[N, - 2] r[A,, - :3] *. A 1) - I1

and a and b are the vectors of coefficients appearing in (2.5). The lower partition

X 4 a = 0 (2.!))

represents an overdetermined set of linear equations that need not have an exact

solution. This set of equations can be solved by least squares, where a is chosen to

minimize the least squares norm of the equation error SA = jleA 112 in

XAa = eA. (2.10)

This leads to a set of linear equations called the normal equations, which can be

written compactly as [Ref. 1. pp.536-537]

.4X)a [$Aj (2.11)

and can be solved for a and 8 A. Once the vector a is known, it can be substituted

in the upper partition of (2.6)

b = XFa (2.12)

to solve for the vector b. Although it is referred here simply as Pronv's method.

this procedure is also known as the modern Prony method or the extended Prony

method.

7



X In(I- t + 7~t [1 X

6[n •] Bt : =k 1)+0 1)-. .I:-. 0, o. 0i, -- i, .,i, -

Figure 2.2: Block diagram for the indirect modeling problem.

Although Pronv's method is simple to implement. it is important to keep)

in mind that it is an indirect method. In particular this procedure (see Fig. 2.2)

minimizes the squared magnitude of the error

C.4[n] = r[n] * a[n] - b[n] (2.13)

where the sequences a[n] and b[n] are defined as

Sdeff a,; 0< n_< P (a0 = 1)
a[n] 0: { t -~ ~•P(ol (2.1-1)

] 0: otherwise

and

df an; O_<n<Q (ao=l)b[n] (21{[ 0; otherwise (2.15)

where P and Q are the number of poles and zeros respectively. Equation 2.13 repre-

sents a different least squares error from that in (2.3) where the quantity to minimize

was the squared magnitude of the error e[n] (see Fig. 2.1). The practical significance

of this difference is that frequently there is a loss of accuracy in estimating the poles

and zeros by Prony's method [Ref. 3].

2. Signal Domain Form of Prony's Method

An alternative formulation of the method described above can be obtained

if the problem (2.1) is stated in the signal domain by representing x[n] in terms of a

set of complex exponentials:

x[n] ; c~r n + c2r• +... + cp,' (2.16)

1 +(P



where as stated before, the rk are the roots of the polvnoilmial ..(z). assumeld to ih

distinct, and the complex coefficherits ca. provide for the linear colnl)iiat lion of IlIe P)

roots.

This approximation can lbe initially oinmilat(1led as iII I lie section above and

(2.9) can be solved in the least squares sense for the coetlicients of .I(z) (ie. tlie

vector a). The roots rk of .,( z can then be found and (2.16) can be evaluated for

n = 0. 1 ...... V, - I to produce the set of equations

[1 1 -. 1 - x{Oj

r2 r 2 . .. C)r .1.12]( .7

K.. 2r,.> L = [2N - 1] .

This set of equations can then be solved in a least squares sense to obtain the vector

of coefficients c.

In the case of multiple roots at the same location, a slight variation of the

same procedure can be used. Suppose, for example. that r, is a double root. In this

case, the approximation is

x [n] ; Cl r±'• + c2 nr1 + - cpr" (2. 18)

and the matrix equation to solve for the coefficients becomes

1 0 1 ... 1 x[0]
r I r I r:3  ... rp X11]

1 -. 3 . ('2.19)
• . . . r["]

r ~~ CJ) -- r .. r xLVNs - 1

This situation is rare. however. because computational errors and errors inherent to

the modeling method itself contribute to produce roots that Mav be very close to

each other, but not exactlv at the same location.

9



3. Iterative Prefiltering

The iterat ive pre ilteriii met hUI( ati lrnpts to solve I lIe "(-I-eCt pro hlb l II

mentioned in subsection [ of' this chapter and 0o r(elne the ifilial pole-zero (.s-1i1ale

by solving a succession of linear l)roblen, l. Equat ion 2.2 (error for I lhe lirect problem)

can be written inl the s7-domain as

E(z) = (s) -(s(:) =.(s) - (s) _ (s)A(s)- 13(s) (2.20)

A(:) -Vs)

The notion of iteration (an lbe introduced that allows computation of a new set of

poles and zeros based on the last known set of poles. Iterative prefiltering replaces

the error for the direct problem at. the l i -+ )t1h iteration with the iterative error

function

AW(s)() (2.21)

If h(0)[n] is the inverse z-transform of I/A(.)(:), then the error can be written in the

signal domain as

C 1+ [(it] = x[n] * h()[n] * a(t +')[n] - b0`l)[n] * h( )[n]. (2.22)

The coefficients a(i+1)[n] and b0i+1)[n] are selected to minimize the corresponding sum

of squared errors
,\ •- I

S(+I Z cl[ (1+ (2.23)

at each iteration: this situation is shown in Fig. 2.3. No general proof of convergence

has been given for this algorithm: however, it is easy to see that, if the iteration does

converge, it must produce the same answer as the direct method. Specifically, at

convergence A() = A(+), and (2.21) becomes the same as (2.20).

If we use an indirect modeling procedure like Prony's method to compute

the initial vector a and we define x(it as

,r(')[n] .t r [n] * h(t)[n]. (2.21)

10



~Ifl

Figure 2.3: Block (diagram for the iterative pr(fill'erimai rllethod.

then the Sequences Id')[n] and x'')[n] for u 0. 1 . \... -. (. V;- Ic computed from

the recursive difference lquatiolls

and

P

hiL)[,] - .ru]k- Z - (2.-26)

k=
k= I

Thus the error (2.22) can be written as

p GQ
(JZ+i)[,1]: a ,+ II - k] - 3 I,('+")h')[, - j1. (2.27)

k=O J=O

In order to find the coefficients a z+1) aUd b(+'). the error is written in matrix form

for n =0.1......- 1 as

X (Za( (+)) ] e(1+1). (2.2,S)

where

X~) x(z)[P + 1] x~i)[P] Xr~i (2.29)

x -5- 1] xILA-Y5 - 2] X(i)[N.\r - 1 - P]

h (-)[P] h(. )[P - 1] ... h,(')[P -

(,) h(')[P + 1] h(.)[P ] ... ( )[P+ (2.-Q +)

h A)[ 5 - 1] h(')[N., - 2] /1(i)[ . - 1 - 2]

1 t



and -

ab"
ittill l 01 )-t-l-1

l;(filt la Oll 2.'2 is •flilua o lis 1() (2.10). I i llie la, il '(jlu rIS prolihill de'lili(l h\

rinindIilizirlg I ile norm of I he error in (2.2S) )Ci I, he redl u''l Io

X I' H _Xl ") H 12.32)

wihere

!ie ,2.33)1

This linear equation (ari then be solved for Ihe vect ors of ifiter para lller.s.

At this point. it is instructive to (compare the performanlce of hle three

modeling met hods oit litined it this chapter bv applying each to t iodel a siall segiment

of a t ransient sound corresponding to a wrench being st ruck. Fliis wrench sound was

recorded and sampled in t he laboratory at a samiplii•g rate of approxiniately 10.210

l1z. 'This signal. denoted b" wren01, was also used and modeletd in [Ref. 91. Figure

2.4 shows a 100 point segment of tlhe signal wrenn01 with one of I lhe Ilhree iliodels

(Pronyvs. signal domain form of Pron"s.. and Iterative Prefilt erinqi ) overlaid. In all

three cases the signal was modeled with four poles ant four zeros..\.s -an l)e seen.

the difference between iteralive prefiItering and Ihe first two models is significant.

[he non-iterative met hods match only the initial points ol the sequeni'ce. anl produce

poor approximations in modeling the remainiri part of the signal. This is due. in

large part. to poles not sufiicientlv close to the nitl circhle. eralive prelilterii,.,

on the other hand. produces a model which is close to the real sequ•ence alonmg Ilihe

complete segment.
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III. ITERATIVE ALGORITHM IN THE
SIGNAL DOMAIN

A. MULTIDIMENSIONAL OPTIMIZATION BY GRADI-
ENT METHODS

A nMultidiimensional function j'(x.. x..x, ) that is continuous and differen-

tiable can be minimized using one of several very powerful hillclimbing techniques

known as gradif nt met hods [Ref. 10, p. S4]. Some of those inethods are derived on

the basis of a quadratic model that can be obtained from a truncated Taylor series

expansion of f(x). Let xik) denote the value of x at the 'th iteration. Then for any

point x = x~k) + 6: when 6 is small. the function can be approximated by
1 T kf(x.k) + 6) • q(k)(6) = f(k) + g(k)Tb + .6G 6 (3.1)

where g and G represent the vector of first derivatives and the matrix of second

derivatives of the function f(x) respectively and they should be available at every

point. In .\ewton's method the iterate x(k+,) is taken to be x(k) + 6 (k), where the

correction 6 (k) minimnizes q(k)(S ). This method is only well defined when the matrix

of second derivatives G is positive definite, in which case the kth iteration of Newton's

method is given by the following procedure [Ref. 11, pp 44-46]:

1. solve G(k) 6 = _g(k) for 6 = 6 (k)

2. set x(k+l) = X(k) + 6(k).

(3.2)

The fact that G(k) may riot be positive definite when x(k) is far from the solution,

and that even when G(N) is positive definite convergence may not occur. makes this

method undesirable as a general formulation of a nminimization algorithm. However, a
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number of variations to the basic met hod have bieen proposed that are IIore slil able

for a general class of problems. One of I lhiese met hiods is .V, t0to011 11)(1o/1d 1,ilh /iu

,,Caclih [Ref. 11. pp. 17-49] iM which tHie Newt on algorithm I is used to oerierale a

direction of search

s _ = g ( k) (3.3)

which can later be used in a line search algorithnm to actually calculate the correction

6. In the cases when G(k) is not positive definite, the linear search can be made

along ±s(k) choosing the correct sign to ensure a descent direction. However, some

difficulties that arise here (like very high numerical costs and failure of convergence

for some special cases) make this an undesirable approach for our algorithm.

As stated before. Newton's method is defined only when the matrix G(k) is

positive definite, and this matrix is positive definite only when the error 6 is -'small":

or better stated, the method is defined only in some neighborhood W){k) of x(k) in

which q(k)(6) agrees with f(x(k) + 6) in some sense. In such cases, it is correct to

choose x(k+1) = x(k) + 6 (k). with the correction 6 (k) minimizing q(k)(6) for all x(k) + 6

in 0 .k) This method is referred to as the restricted step method because the step is

restricted by the region of validity of the Taylor series. [Ref. 11]

The region of definition for the kth iteration can be expressed as

Q(k)= {x : llx - x(k)I : h}(k) (3.-)

where denotes the norm of the vector. In this case. the optimization problem

can be stated as:

minimize 6 q(k)(6) subject to 11611 < h(k). (3.5)

As mentioned before, the least squares norm is the one most commonly used in this

type of problems. so it is the one used in this thesis and is denoted as II1 112. The

problem that now becomes apparent is how to select the error margin h(k) of the
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neighborhood (3.4-). This margin shiould be as large as possible Ibecause I he, iteraio 1011

step is directly related to it.. Various inetlhods Iiave been proposed I to coitrol Ilie

parameter hi(): one of these methods atternpts to Misure ihat tlie Newivoiis search

direction problem (3.3) is always defined [Ref. 11 . pp. 100-103]. It does so by adding

a multiple of the unit matrix I to Gk) amnd computing the new problem

(G k) + AI) (k) g(k) (3.6)

where the net effect is that increases in v cause 116112 to decrease. and vice versa.

If we define

(k) _ __fk)_ .k) _ f(x(k) + 6(k)

_Wqtk) f(k) _ 1(k)( 6 (k)) '

then the ratio r(k) represents a measure of the accuracy to which q(k)(6(k)) approxi-

mates f(x(k) + 6 (k)) on the kth step, and as the accuracy increases 7,(k) gets closer to

unity. Using (3.7), Marquardt [Ref. 12] suggests an algorithm that tries to adaptively

maintain h(k) as large as possible while controlling the ratio r (k). The kth iteration

of such an algorithm is stated as:

1. given x(k) and v(k), calculate g(k) and G(k):

"2. factor G(k) + V(k)I if not positive definite, reset v(k) = 4 V(k) and repeat:

3. solve (3.6) to find 6(k):

4. evaluate f(x(k) + 6(k)) and hence r(k):

5. if r(k) < 0.25 set u(k+1) = 4/v(k)

else if r(k) > 0.75 set V(k+I) = u-k)/2
else set v(k+I) = -(k):

6. if r(k) < 0 set X(k+l) = X(k) else set x(k+i) = x(k) + 6(k).

Here the parameters 0.25. 0.75. 4 and 2 are arbitrary, and v(') > 0 is also chosen

arbitrarily [Ref. 11, pp. 102-103]. Proofs of global and second order convergence for

this algorithm are given in [Ref. 11, pp. 96-98] for the cases when the first and sec-

ond derivatives of the function f(x) exist, and the vector x(k) belongs to a bounded
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n-dimensional space for all k. A.lthough Ihisi metlhod does1 have sonic disadvantages.

it represents a good basis for tihe formulation of a general minimization algorithm.

Some variations of this method were considered. bit ii was lumid that for the spe-

cific application of ARMA modeling in the l ine domain. lhese \'ariations producedI

an extremely high overhead in calculations.

B. THE ITERATIVE PRONY METHOD

Let us now return to the problem of representing a sequence x[n] as a linear

combination of complex exponentials. Equation 2.17 can be written as

RC = x + F (3.8)

where c is called the (quation e-ror. x represents the data which may or may not

be complex, c is the vector of complex coefficients, and R is the matrix of complex

roots, which can be written more specifically as

1 1 .-- I
rni + jrl rR2 + jr12  ... rRp + jrlp

R (rR, + jrr 1 ) 2  (rR, + jr'9 )2  ... (rRp + jr 1 ,,) 2  (3.9)

(rR, + jrj,)' (rR2 + jr 2 )"V'i (rP. + jP)N. -I

where rpR and rl, represent the real and imaginary components of the ith root. re-

spectively, and N, is the number of data samples.

By defining

Q IIE112 = -T = (Rc xT (Rc - x). (3.10)

it is clear that the problem is to find the vector r = rR +jrl of P complex roots that

minimizes the function Q(r).

The first and second derivatives of Q with respect to r are represented by the
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vector g and matrix G.which are defined by

g - rR (3. 11)

and

OrR,2 UrR, :IrR, OrR, d)rRci7*Rp drTR rI1  I)TR 991 ;rRt)rfp

,)rR2 rR, ;)rRJrR 2  dTRpaTRp irR2Or I1  OrR~,T2 O 2O

G rR. O3rR OrR 1  drR 2 Or j 1 rR d Or R Orr1  ,IrR OrT O r ildr'P
a2Q~2 __2_a2a_;_2_

______ 92 Q ... 9 
2

Q '92 Q . .. _q
2o

OrI2 arR, Orr, arR 2  arjp drRp arj2 O9rr, 93rl, Orr,1 O2 drIp ir

(3.12)

In order to providt 'or a more compact notation, define the gradient operator with

respect to the complex vector r as the vector of partial derivatives

OrR
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consequently. (3.11) can be expressed as

g - Vr, " (3.11)

Equation :3.12 can also be written as

;9rR-'-" ,ir j? itrp, irt .I?, rj! "ir[2 Ir,tr p

0 0 1 L~) 0 )

,Ir ) ' fr,1 ,rl , :I ,rRr ,lrli ýr!2 "I,

, rP r ,r,, 'rj-1  #rl) ,rlP

G =0 1 (3.15)

0 IL)3 0 0*j"irR rRp.,

: [ ,'T
1  

,lb'O ,• ) )

)rlp rR 1 dr R 2  grRp ,)rll ri O)rip

Now using a somewhat more convenient notation, (3.15) can be rewritten as

[,[o~ _1H
TR, OrR, Orr,

G =

Or --- 'k OR, Or,

=I .I

k = I ... P (3.16)

and it becomes clear that the matrix of second derivatives can be expressed compactly

as

G ='7r (rQ)T] Vr [ (VrRQT ('rQT . (3.17)

The following subsections derive explicit expressions for the two quantities g and G.

1. Vector g of first derivatives

From (3.8) it is easy to see that

oE OR Of OR *
-- =-c and - ="T (3.18)

Or, Ori Ori Ori
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where r, represents the real or imaginary parts of the 1th root. I-sing :3.18) and Ithe

chain rule in (3.10) leads to

i) -TO ' R-
- • + R E. (:1.19)

Orp, OrR, Tr ,

and explicit evaluation of the partial derivatives of the matrix R results in

0
1

0 C .T '2 (rR, + jrl,))
OrR, 3 (rR, + jrI,)2  c

(A,5 - I)(rR, + jri,)'V 2

c T [0 1 2 (rR, - jrj,,) 3 (rj, - jrj,)2  ... (N, - 1) (rR, - jr,,) -2]

(3.20)

where ci is the Ith component of the vector c. If the quantity ýj is defined as

0
1

4 2(rR, + jri,) (3.21)3i =(rR, + Jr,,,) ci,

(IV, - 1)(r, +jri,).-2

then

R C = 4i, (3.22)

OrR,

c.T aR*T Tr
-- OrR = . (3.23)

and (3.20) can be written compactly as

-rR, 4i + 4 . (3.24
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At this point it can h e recogmized t]hat .3.21) represenits Ite addi(iolh of I wo scalar

quantities where I he first one is I lie complex corijuigat e of' lhe secondl so 13.2 1) can

be further simplified to

2 [he (3. (1.25)

where Re[.] denotes the real part of the vector. Finally, using (3.25) for I I ... P

in the tipper partition of (3.1-1) produces

Vr 2 I) (3.26)

A similar procedure can be used to obtain Ile gradient of 0 with respect

to the imaginary part of the vector r. Once more, from (3.18) and the chain rule

applied to (3.10), it follows that

0j 
(3.27)

Cr _ (C3.28)

These results can be used to generate an expression similar to that in (:3.2-1) for the

vector of first derivatives of Q with respect to the imaginary components of r

,j = i -f j (3.29)

which in turn defines the vector of partial derivatives with respect to the imaginary

components as

Vrr0= 2lm { [ "j . (3.30)
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Equations 3.26 and 3.30 caii HOW be COifneiiCd as shown 11 3.1 1) to Ob)aim h lie t Imial

expression for the vector of first derivatives

g = VrRQ 1 {3.3 1

L Ir F 1

2. Matrix G of second derivatives

An expression for the matrix G of second derivatives can be obtained as

follows. Substituting (3.24) and (3.29) into (3.16) yields

[ [. ( T {ET + ý *.T i -T1 )4 1
G =

S( [.T , T,:T ý-T

k, = ... P. (3.32)

Then using the chain rule and both expressions in (3.18) leads to

G=

L r + c1T FR'T4, + , 1L_,

* T )R CT' T )R.1  TI ,iR.
L r~ *)rpk , I

4
TR. C TRk I~ rRk R, ? "nk

T2L_ .- TORT T 1 FTL + C-i-;R 1  4.I ;R C 1I;)ri, *)~7 ~± r Ik :Lr, -c----'-"Il r+1 + C + Ifk I ,k - ---

i= l .P; k = .. P.
(3•.33?)
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From the definition of { in (3.21) it is seen lhat

0
"2

6 ( ,r j , + j :, c , , It ' i z -k
c) i lef 12 ( "ij, + 1. "1, )2

O', -- i (3.31)
drik

• -1 )( V -2) )( +i2 jrj, V

0. otherwise.

In the same way it can be shown that

- jSik 
(3.35)

017k _ js . (3.36)

arl,

I __ 4 (~3.37)
Or Ik J Jik

These last four expressions together with (3.22), (3.23),(3.27), and (3.28) can now be

substituted in (3.33) to obtain

+ SIT~j _ 4

[j S i - - [E'TSik - 4kT~ - ikG =

k = ... P. (3.38)

Finally notice again that the elements of the matrix G are formed by addi-

tions and subtractions of complex scalars with their respective complex conjugates:
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thus tie final expression for G is given bv

2Re [Frlki + 2 Re [s.I '2 lihn (Ic. -2 1 m [sT. 1
G = 1-2 Ini ý, k + 2 lin <TEl 2 Rc "4 2 Re ýs'eJ J

i= 1 . P: j = 1 . P :.

where it should be remembered that sik = 0 for all i k/A.

3. Algorithm implementation

An iterative method for ARMA modeling in the time domain was imple-

mented using the results of the last two subsections in conjunction with the algo-

rithm presented in section A of this chapter. We call this method the iterative Prony

method.

The algorithm uses the signal domain form of Prony's method to calculate

an initial model for the given sequence. From there it uses the calculated model

to compute the error E. the vector of first derivatives g, and the matrix of second

derivatives G and iterates until specific conditions are met. Figure 3.1 is an example

of how the algorithm changes the position of the poles and zeros of the initial model

in order to minimize the error. This figure represents the poles and zeros of a transfer

function of order (4,3)-4 poles 3 zeros-that was overmodeled using a (6.5) order

model. It is clear from the figure that the tendency in this case is to have a pole-zero

cancellation (see second and third quadrants) of two poles and two zeros as expected.

Some features were added to the basic algorithm in order to deal with special

modeling cases. Specifically, if the initial model has some roots on the real axis, then

because of the way the algorithm iterates, those roots never move away from the real

axis. A modification was therefore introduced to deliberately displace those roots

from the real axis and proceed with the iterations. If the tendency of the roots is
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Figure 3.1: Displacement of the poles and zeros of an iterative Prony's model

"to go back" to the real axis, then they are returned to their initial position, and the

iterations continue. Otherwise the roots may continue to spread apart and move as

a complex pair. Figure 3.2 is an example of thie 3"f "C poles aid zeros

of an order (4,3) model. In this case the modeled signal actually has two poles on

the real axis. and the initial model correctly placed two of the poles in the real axis.

Those poles are displaced from the real axis by the algorithm. but then after some

iterations it is clear that the poles are tending to return to thte real axis. At this point

the poles are forced back to the real axis by setting their imaginary parts to zero

and the iterations continue until convergence is obtained. The opposite situation is

shown in Figure 3.3. In this case the initial model also has two poles located on the

real axis, but contrary to the case presented above, the roots, after being displaced

from the real axis, continue to move away from the axis until they reach their final

position in the first and fourth quadrants closer to the unit circle.
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o.8 I poles before iterations
0.8•

0.6k x = poles during iterations

0.4- o = zeros during iterations
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Figure 3.2: Displacement of the poles and zeros of a 1t-:3 model. The modeled signal
in this case actually has two poles on the real axis

0.8 * = poles before iterations

0.6- x = poles during iterations

o = zeros during iterafions .

0.2-

0q ' op . 0 o 0 0000M

-0.2- A

x - wix{-0.4-•,

-0.6-

-0.8

Figure 3.3: Displacement of the poles and zeros of a 1-3 model. The initial rmodleI
shows two poles in the real axis. the final model in this case has tic, poles in the axis
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IV. PERFORMANCE OF THE ALGORITHM
AND MODELING RESULTS

A. TEST DATA USED IN THIS THESIS

TVwo tvpes of signals we're used it this iliesIs to let5t Il( p)erforialice ofl thei

algorithi. Tihe tirst type. which will be caliled .imillafa d l(est dala. consists of five

sequences (101 to 10.5) each one hund(red points long tlhat were produced as the

impuilse response of a known rational svsteiti. Noise to prod'uce an SN P in the range

of 10 to 15 (113 was added to i lie original sequences. and t lie resulting se(quentces were

designated as tO I - to t(5_n. The original signals are d(escribed in Table 1.1 by Iheir

transfer functions and the location of their poles and zeros.

The second group of test signals consists of recorded acoustic data. Two of these

signals were recorded and sampled in the laboratory. One of theit is the sequence

wrrnOl already mentioned in Chapter I1: the other one was obtained from lihunan

speech. in particular. the signal VowILa corresponds to 100 samples of the spanish

vowel a. The remaining three signals from the group of acoustic data were recorded

at sea by a submarine platformn: they correspond to sounds produced Iy Marine life

and ice cracking. [The description of the acoustic signals is presented in Fablme 1.2.

B. PRESENTATION OF RESULTS

All simulated test signals were modeled twice with the iterative PronY method.

In the first test the exact number of poles and zeros of the original model was used:

in the second test all signals were modeled using two more poles and zeros than the

original model. This last test is considered closer to a real life sitnation where t he

exact order of the signal to be modeled is unknown.
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FABLE.I- L.t: I)FSC(HIPTION O)F DAII[L.1iT) iLE T I)A.\

N\.It:. I[RANSI"F, 1:1 N(CTION 1( l1'•1S ZiEROS

tol 01 = -(7: 0.9513 Z 0.62S6 0: 0.770

t02 I1 0 = o.7. - -, 1-.6 3z-- ý..,o :-3 0.9.122 L ± 0.6200 0: 0.1686

I -- 2.477z: --+3.l)O9 z-- -- - 52.520z-'- + 0.717,-4
0.8987 Z ± 0.6:385 1.80(69: sc

0-3 0.9512 L + 1.8846 0: 0.9521•0::I i(:) = i+1.SUlz_,+2.5Saz_,.S-t.6S4: 3_.•o.lgz 4

0.9514 _ ± 2.3041 -0.9521: 1:

tot.1,z, -U -H1 2:.sI) 0.9513 Z ± 0.2097 0: c
0.90-19 ± 2.0943 0.9123 Z - 0.8068

t11 1 79:- 0.8441: 0.9358 0: 0.750tO5 tt~z) = 1-1.78S---l+o.'79---

TABLE 4.2: DESCRIPTION OF A ('OUSTIC TEST DATA

SIGNAL DESCRIPTION

wren0l Transient sound corresponding to a wrench being struck

vowel-a Spanish vowel a

bio-2 133a Sperm whale

blo2...S5a Porpoise whistle

blo_2,0a hIe cracking
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To mathematically produce a meaningful measure of the perforniance of a niod-

eling algorithm can be quite difficult since various miornis Can be dleceiving. when

comparing errors of signals with large differences in magnitude. Iwo differenit ap-

proaches to measure the p)erformance ot the algorithms were therefore used in this

thesis. The first is quantitative and involves computing the sqvared-norm of the error

between the model and the actual signal and dividing it by the total energy (Inorm)

of the signal. The second approach is to overlay in a plot the model and the original

signal in order to provide a visual comparison of the results. This is less quantitative

but frequently more revealing of errors in the modeling p)rocess.

1. Simulated test data

The first data sets modeled were the simulated test data sets. Figure 4.1(a)

is a comparison of the normalized errors that result when the sequence t01.n is

modeled with 2 poles and 1 zero using both iterative prefiltering and iterative Prony

methods. Figure 4.1(b) and (c) show 100 points of the sequence tOl. and the

two order (2,1) models. At this point there is no noticeable difference between the

iterative prefiltering and the iterative Prony models. Figure 4.2(a) again shows a

comparison of the normalized errors between an iterative prefiltering model and an

iterative Prony model of tOl1n for the case when the signal t01_n was overmodeled

using models of order (4,3). Although the difference between the two modeled signals

in this case is not large, notice that the error for the iterative prefiltering method

initially increases before decreasing while the error for the iterative Pronv method

decreases monotonically. This is the first example of a pattern that repeats in all but

one of the simulated test signals that were modeled. Figures -1.3 through 1.10 give

similar comparisons for the remaining simulated signals. The pattern, which can be

seen in Figures 4.1 to 4.10. is that when the signals are modeled with a number of poles

and zeros different from that of the actual order of the signal (always overmodeling
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0-1 - solid = Iterative Prony method

- dashed = Iterative prefiltering method

10-2-

10-3 _ Iteration number
0 0.5 1 1.5 2 2.5 3 3.5 4

(a)

2
solid = signal tOl-n

dashed = iterative prefiltering model

E 0

-1: n
0 10 20 30 40 50 60 70 80 90 100

(b)

2.
solid =signal tOl_n

dashed - iterative Prony model

E 01, / ' ' " "'

-1 _n

0 10 20 30 40 50 60 70 80 90 100

(c)

Figure 4.1: Signal tOl1n and its 2 poles-1 zero models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal 10li and
the iterative prefiltering model. (c) Signal 101n and the iterative Prony model.
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10-2 - --0 solid = Iterative Prony method

- dashed = Iterative prefiltering method

V4

10-3 .. . .. Iterabion number __
0 1 2 3 4 5 6 7 8 9

(a)

solid = signal tOl-n

dashed = iterative prefiltering model
,2

E 0

.1• n
0 10 20 30 40 50 60 70 80 90 100

(b)

2 -
solid = signal tOl-n

1r- dashed = iterative Prony model

E 0

-1: n

0 10 20 30 40 50 60 70 80 90 100

(C)

Figure 4.2: Signal tOl-n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal 1OL0n and
the iterative prefiltering model. (c) Signal tOla and the iterative Pronv model.
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10 0 - . . . - -.. . . . .. .

solid = Iterative Prony method

- dashed = Iterative prefiltering method

10-1

10-2-

10-3, Iteration number
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(a)

solid = signal t02_n

5 L dashed = iterative prefiltering model
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(b)

solid = signal t02_n

5 k- dashed = iterative Prony model

00 ,5, ,--- n
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0 10 20 30 40 50 60 70 80 90 100

(C)

Figure 4.3: Signal t02_n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal IO0-n and
the iterative prefiltering model. (c) Signal tO-2n and the iterative Prony model.
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10.1_ _

10 -2 77i .. . ..

- solid- -Iterative Prony method

dashed = Iterative prefiltering method

10-3 Iteration number
0 5 10 15 20 25 30

(a)

solid = signal t02-n

5 dashed = iterative prefiltering model

0

-51
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(b)

solid = signal t02_n

5 ý- dashed = iterative Prony model

00

O0F~ ',, .I•-• .. ..

-5' n
0 10 20 30 40 50 60 70 80 90 100

(C)

Figure 4.4: Signal 102-n and its 6 poles-5 zeros models, (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal tO2_n and
the iterative prefiltering model. (c) Signal 102n and the iterative Prolmv model.
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100 :__

- solid = Iterative Prony method

dashed = Iterative prefiltering method
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Iteration number10-3 .. ..
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(a)

1.5

I solid = signal tU3_n

dashed = iterative prefiltering model
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(b)

1.5,
I solid = signal t03-n

dashed = iterative Prony model
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E V
-0.5

_1• n
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(C)

Figure 4.5: Signal tOn and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal tIOQ.n and
the iterative prefiltering model. (c) Signal lO,1n and the iterative Pronv model.
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2---solid = Iterative Prony method

dashed = Iterative prefiltering method

10-3, __ Iteration number . .
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(a)
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1 solid = signal t03_n

dashed = iterative prefiltering model
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solid = signal t03-n
dashed - iterative Prony model
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-1 0_n
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(C)

Figure 4.6: Signal tO3_n and its 6 poles-5 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal t iLi and
the iterative prefiltering model. (c) Signal 103-11 and the iterative Pronv model.
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- solid = Iterative Prony method

"dashed = Iterative prefiltering method
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dashed = iterative prefiltering modelg 1-•
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dashed = iterative Prony model
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Figure 4.7: Signal t04-n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal 104_11 and

the iterative prefiltering model. (c) Signal 104-n and the iterative Pronv model.
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solid =Iterative Prony method

dashed = Iterative prefiltering method
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0o.5,

"-0.5 1 -, .. ,,, n

0 10 20 30 40 50 60 70 80 90 100

(b)

2

1. -solid =signal tO4_n

Sdashed =iterative Prony model

" 0.5• , ,

-0.5 !_ _ _ _ __ n
0 10 20 30 40 50 60 70 80 90 100

(C)

Figure 4.8: Signal t04-n and its 6 poles-5 zeros models. (a) 'Normalized squared-
norm of the error between the models and the actual signal. (b) Signal tO4-1 ard
the iterative prefiltering model. (c) Signal tO4_nl ard the iterative Prony model.
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- dashed = Iterative prefiltering method
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Figure 4.9: Signal t105n and its 2 poles-1 zero models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal .5-n. and
the iterative prefiltering model. (c) Signal /0l5-n and the iterative Pronv model.
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Figure 4.10: Signal tO.5_n and its 4 poles-3 zeros models. (a) Norrnalized squared-
norm of the error between the models and the actual signal. (b) Signal 105-1 and
the iterative prefiltering model. (c) Signal 1O5_n and lie iterative Pronv model.
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in this case). thie behavior of the iterative p)retiltering method( tends I o dehrade i i.e..

it takes longer for the algorithbin to reach convergence) while Ihlie behaiv,)r of the

iterative Pronv method remains the same or even improves as in the case of 105_1

shown in Figures 4.9(a) and 1.10(a). Parts (b) and (c) of Flgures 1.1 through 1.10

show the original signals and their respective models overlaid. It can be seen that

the models arrived at bv both methods follow the original signals very closely in all

cases. Table -1.3 lists the location of the poles and zeros of the systems used to model

all the simulated noisy signals. These systems were obtaiwed using both the iterative

prefiltering and the iterative Prony methods. The poles and zeros shown in Table 1.3

can be compared to the poles and zeros of the original simulated signals presented in

Table 4.1. It is clear that the location of the poles and zeros of the modeled signals

should not be exactly the same as those of the original signals because some noise (in

the order of 10 to 15 dB SNR) was intentionally added before the modeling process.

However, Tables 4.1 and 4.3 show a close relation between the location of the poles

and zeros of the original sequences and the position of the poles and zeros of the

modeled signals.

2. Acoustic test data

As mentioned in the last section the acoustic test data represents sounds

recorded both underwater and in a laboratory environment. In some cases shorter

segments were selected for modeling due to the complexity of these signals. Once

again the iterative prefiltering algorithm was used, and its results were compared to

the results obtained using the iterative Prony method.

Before presentation of results, it is important to explain how the model

produced by the iterative prefiltering method was selected. For all the cases. the

same number of iterations was used both for the iterative Prony and for the iterative

prefiltering methods. In order to obtain the best possible results from the iterative
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FABLE 1.3: POLE-ZERO LOCATION OF TIlE .YSTi'\IS VSEI) TO YOI()l),
THE SIM( LA- TED NOISY TEST DATA

SIGNAL ITERATIVE ITERATIVE
NAME & PRHONY PREFILTERING
(ORDER) POLES ZEROS POLES ZEROS

tOln 0.9.511 Z 0.629 1 0: 0.7612 0.9507 z 0.6290 0: 0.7619
(2.1) 1

to01. 0.9510 L ± 0.6290 0.7636 0.9506 Z ± 0.6289 0.76:30
(4,3) 0.9217 / ± 3.1397 0.9-176: 0.9151 0-9867 Z - 2.09,44 0.9886 L ± 2.0880
t02i 0.9545 Z ± 0.6238 13.2102 0.9250 L ± 0.6313 6.8483
(4,3) 0.8155 / ± 0.67-13 2.1568: 0.1799 0.9142 / ± 0.6238 1.6619: 0.4650
t02.n 0.9541 / ± 0.6228 17.1527 0.9301 Z ± 0.6335 6.5260
(6,5) 0.8505 Z ± 0.6797 2.1237: 0.0952 0.9068 / ± 0.6173 1.8203: 0.5542

0.9896 Z ± 2.7699 0.8760 / ± 2.7876 0.9221 / ± 2.4366 0.9800 L ± 2.3896
t03_n 0.9510 / ± 1.8850 22.9950 0.9499 Z ± 1.8851 12.2468
(4,3) 0.9505 L ± 2.3029 1.0511: 0.9365 0.9514 Z ± 2.3030 0.9680: 0.8020
t03_n 0.9509 / ± 1.8851 21.1093 0.9492 Z ± 1.8854 7.5747
(6,5) 0.9506 Z ± 2.3029 0.9340: 0.6882 0.9515 / ± 2.3028 0.9566: 0.6099

0.9356 L ± 0.2779 1.1445 L ± 0.3507 0.9796 L ± 1.5986 0.9870 L ± 1.6035
t04_n 0.9022 / ± 2.0981 22.9853 0.9048 L +2.0956 2362.7
(4,3) 0.9515 Z ± 0.2097 0.9494 L ± 0.8212 0.9.516 / ± 0.2090 0.9000 Z ± 0.8090
t04_n 0.9040 / ± 2.0966 17.5349 0.905:3 / ± 2.0933 57.6799
(6,5) 0.9517 Z ± 0.2094 0.9 104 Z ± 0.833:3 0.9518 Z ± 0.2093 0.9486 / ± 0.8189

0.7237: 0.7221 0.7099 / ± 3.1117 0.9542: 0.8105 0.9461: 0.7803
t05_n 0.9416: 0.7840 0.669:3 0.9363: 0.8325 0.7236
(2.1)

t05.i 0.9366: 0.83-15 0.7330 0.9368: 0.8231 0.7019
(4.3) 0.9571 Z ± 2.8523 0.93571 Z ± 2.8436 0.8839 Z ± 2.7995 0.8998 Z ± 2.7977
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Figure 4.11: Signal rouwcLa being modeled by iterative pretiltering using a 10.9)
order system. (a) Normalized squared-norm of thie error between t lie model and the
actual signal. (b) Signal ?.owucLa and the iterative prefiltering model selected from
the 2 0th iteration. (c) Signal cowcLa and the iterative prefiltering model selecied
from the 17th iteration.
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Figure 4.12: Behavior of the poles of the system used to model tihe signal rou, L_,
during one oscillation of the iterative prefiltering algorithm. (a) 1 5 th iteration. (b)
1 6 th iteration. (c) 1 7 th iteration. (d) 1 8th iteration. (e) I!)th iteration. (f) "20 t'

iteration.
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Figure 1.13: Behavior of the zeros of the system used to model the signal rowLa
(luring one oscillation of the iterative prefiltering algorithm. (a) 15'h iteration. (b)

1 6 th iteration. (c) 17 Ih iteration. (d) I 8 th iteration. (e) I9 th i(eration. (f) 20th
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high enough order to properly model the original signal. once such a model has been

selected, increments or small variations to its order (1o not produce degradations o0i

the performance of the algorithm. On the contrary, it was found thai in some cases

the performance of the iterative prefiltering algorithm can abe signilicantlY reduced

when the order of the model is increased slightly. It can also be seen that the itera-

tive Prony algorithm tends to provide a closer match to the data than the iterative

prefiltering method, and in most of the cases the rate of convergence of the iterative

Pronv method was higher than that of iterative prefiltering. Another important point

that can be extracted from the results presented in Figures -1.14 to 4.23 is that while

convergence with neither algorithm is guaranteed. we obtained convergence with the

iterative Prony method in all cases for these acoustic signals. The same was not

true for iterative prefiltering. In most of the cases the error for the iterative Prony

method begins to decrease starting at the first iteration. and although the change is

not monotonic in all cases. the error after a few iterations is consistentlv lower than

the initial error.
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Figure 4.14: Signal wren l and its 7 poles-6 zeros models. (a) Normalized s1quared-
norm of the error between the models and the actual signal. (b) Signal wrn 101 and
the iterative prefiltering model. (c) Signal wrenOl and the iterative Pronv model.
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Figure 4.15: Signal wren01 and its 12 poles-ll zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
wrenOl and the iterative prefiltering model. (c) Signal wrenfl and the iterative
Prony model.
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Figure 4.16: Signal rouieLa and its 10 poles-9 zeros models. (a.) Normalized
squared-norm of the error between the models and the actual sighial. (b) Signal
voweLa and the iterative prefiltering model. (c) Signal i'oawcLa and the iterative
Pronv model.
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Figure 4.17: Signal vowcLa and its 14 poles-13 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
i'oweLa and the iterative prefiltering model. (c) Signal roweLa and the iterative
Pronv model.
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Figure 4.18: Signal bio_2133a and its 8 poles-7 zeros mnodels. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
bio_2133a and the iterative prefiltering model. (c) Signal bio_2133a and the iterative
Prony model.

52



10' ...

solid = iterative Prony method
S100 dashed = iterative prefiltering method

11 O"20Iteration number
0 10 15 20 25 30

(a)

10000- solid = signal bio_2133a

Sdashed = iterative prefiltering model

00

-5000 1 n
0 5 10 15 20 25 30 35 40 45 50

(b)

10000- solid =signal bio_2133a

dashed - iterative Prony model
5000t _

00

-5000 L n
0 5 10 15 20 25 30 35 40 45 50

(C)

Figure 4.19: Signal bio_2133a and its 12 poles-li zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
bio_213.1a and the iterative prefiltering model. (c) Signal bio_2133a and the iterative
Prony model.
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Figure 4.20: Signal bio_.2385a arid its 8 poles-7 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
bio_2385a and the iterative prefiltering model. (c) Signal bio_23,5a and the iterative
Prony model.
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Figure 4.21: Signal bio_2385a and its 12 poles-ll zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
bio_2385a and the iterative prefiltering model. (c) Signal bio_23S5a and tlhe iterative
Prony model.
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Fizure 1.22: Sinrial bio_,s'a and its 8 poles-7 zeros niodels. (a) Nornialized squared-
riorrn of the error betweeii the trrodels and the actual signal. (1)) Signal blio_'Oa and
the iterative pretiltering model. (c) Signal bio_,>Oa and tle iterative lProny m Iodel.
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Figure 4.23: Signal bioOa and its 12 poles-ll zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
bio_80a and the iterative prefiltering model. (c) Signal bio_80a and the iterative
Pronv model.
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V. CONCLUSIONS

A. DISCUSSION OF RESULTS

In this thesis. a new method for modeling signals iM the time domain is developed

and applied to model both recorded acoustic data and simulated signals produced

as the impulse response of a known system. We call this method the iterative Pronly

method. In most. of the simulated test data sets the niodels provided by the iterative

Pronv method are sufficiently (close to the original signals: in most cases. it is diffi-

cult to distinguish between the signal and the model. When modeling the acoustic

data distortion becomes apparent in some of the models, which may be due to the

complexity of the structure of the signals. However, this distortion is no worse than

for any of the best algorithms that have been used Lo model this data previously.

The new algorithm was compared very specifically to the iterative prefiltering

algorithm [Ref. 7, 8] which has been used in modeling a variety of acoustic data

[Ref. 3, 9]. The rate of convergence of the iterative Prony method was in most of the

cases comparable or superior to that of the iterative prefiltering algorithm. Thus.

while iterative prefiltering sometimes has convergence problems. the new algorithm

is much more dependable in that respect. The price to pay for this improvement is

in the number of computations. While the number of floating point operations per

iteration in the iterative prefiltering method is approximately

64(P ± Q - 1)3 + 8N,(P + Q)2 + 10(1' + (Q)X, + 12N\,

iterative Prony requires about,

672P 3 + (24N, + 102)P 2 + (60N, + 46)P + 198N,
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floating point operations at each iteration. [or example for a complex data set of

length 100 (As = 100) and P =2 S we have approximatlely 15)2.100 floating

point operations per iteration using iterative pretiltering versus 572.:360 using iter-

ative Pronv. If we increase the order of the model to P ( = 16. ilien we have

approximately 2.787.824 operations per iteration in the iterative prehiltering algo-

rithm versus 3,509,560 in the iterative Pronv method.

B. RECOMMENDATIONS FOR FUTURE WORK

The iterative prefiltering algorithm has been the main tool in the modeling

efforts for sonar data modeling [Ref. 9. 13]. The new iterative Pronv algorithm is

now at a stage where it can be substituted for the iterative prefiltering algorithm and

tested in operational use. To do so needs some further prograrmning to make the

segmentation of the data automatic and to make the entire modeling procedure more

of a -turn crank" operation. These should be some of the very next steps. In addition.

the practical implications of the increased computation needs to be addressed, and

if possible new methods need to be developed to help reduce computations.

In a larger sense the work reported in this thesis can be used as a base for

possible applications of the iterative Prony method in the problems of filter design.

speech processing, and spectral estimation. The expressions for the vector of first

derivatives g and the matrix of second derivatives G of the error derived in Chapter

III can be used along with different minimization methods to provide for other new

modeling methods that may adapt better to specific modeling problems.
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